Creating a secure and undistorted European energy market & Bird & Bird

Steigenberger Grandhotel

^{4th} February 2014 Brussels

Session 4 – Interconnectors

Interconnectors in Europe – Current & future obstacles to delivering security & integration – Stephanie McGregor, Director Grid Systems UK, ABB

Stephanie McGregor, Director Grid Systems UK – Brussels, February 2014. Interconnectors in Europe Current & future obstacles to delivering security & integration

Interconnectors = future for an interconnected Europe?

Obstacles:

- Technology
- Certainty
- Regulation & network harmonisation
- Risk & contracting strategy
- Time & market for procurement

HVDC is a growing technology Driving forces: environmental and de-regulation

A European DC Super Grid

- An interregional HVDC grid is defined as a system that needs several protection zones for DC earth faults, has the same voltage level and very high power rating
- New developments needed, e.g.:
 - HVDC grid breakers
 - Grid power flow control
- Long-term development, e.g.
 - High voltage DC/DC converters for connecting different regional systems
 - On-going Cigre & ENTSO-E work
 - EU 10 year plan & projects of common interest

Drivers for DC interconnection Renewables and balancing

- Europe needs a new controllable transmission system:
 - Landing-point for offshore wind and solar power will be at the "out-skirts" of the grid
 - Changing generation patterns, e.g. the closing of German nuclear power
 - A wish for more interconnections and energy trade
- The transmission grid must be redesigned to meet the new transmission needs, such as
 - Long distance bulk power transmission
 - Low losses
 - Minimum environmental impact

Background Information Example projects & Technology Information

Example Project- NorNed HVDC Cable Interconnection

Customers: Statnett/TenneT

Commissioned: 2008

Customer's need

- Optimize production system in northern Europe
- The hydropower in Norway is back-up to wind power in the Netherlands

ABB's response

- Turnkey 700 MW HVDC system with innovative ±450 kV converter system
- World's longest cable 580 km

Customer's benefits

- Increased security of supply in both markets
- Sharing of balancing power
- Improved power market
- Low transmission losses 3.7 %
- Reduced CO₂ emission with nearly 1.7 million tons per year

Example Project - Caprivi Link Interconnector

Customer's need

 Connect the grid in the north west with the grid in the central parts of the country

ABB's response

- Turnkey 350 kV 300 MW HVDC Light[®]
- Option for another 300 MW
- First HVDC Light[®] with overhead lines

Customer's benefits

- Stability in two very weak AC networks
- Enables future power trading in the expansive region of southern Africa

Types of HVDC Technology for Interconnectors

- Two types of HVDC Technologies
 - Classic (LCC) since 1954
 - Light (VSC) since 1999
- HVDC is more controllable than AC
- Light is more controllable than Classic
- HVDC market is increasing and driven by
 - Environmental aspects (CO₂ reduction)
 - De-regulation of the electricity market

HVDC by ABB Let our experience work for you

THANK YOU !!!!

Power and productivity for a better world[™]

Session 4 – Interconnectors

TuNur Project – Utility scale climate change mitigation – Kevin Sara, CEO, Nur Energie

TuNur Project

Utility scale climate change mitigation. Opening new energy corridors.

Bruxelles, 4th February 2014

What is the TuNur Project?

2GW Solar Energy Export Project between Tunisia and Europe

- TuNur consists of a 2GW solar plant in Southern Tunisia; and a 2GW submarine cable from Tunisia to Italy.
- TuNur will generate ~9,400GWh of 100% renewable power and dispatchable power per annum.
- Once landed in Italy power can be transported to all other European countries such as the UK.
- TuNur will be capable of supplying energy to circa 2.5 million European homes by 2018.
- TuNur is being structured in two collaborating entities:
 - Gen-Co
 - Trans-Co

How TuNur works

Private & Confidential

Mirrors reflect	Power Generation and	Sub-sea HVDC	Electrical	Distribution to
solar rays	Transmission	Transmission	Transmission	Europe and the UK
			throughout Europe	
Heliostats (mirrors)	The rays heat the boiler to	Electricity is	0 1	TuNur will provide
track the sun and	create super heated steam	transported from	The whole European	9,000 GWh per
concentrate direct	(>550 °C). This thermal	Tunisia to Italy	grid is connected so	annum by 2018,
solar rays atop the	energy is then sent into a	through a high	once power lands in	equivalent to 2.5
central receiver	standard turbine generator.	voltage DC	Italy it can be sent	million European
(boiler).		connector cable	across Europe	homes.
	Excess heat can be stored	with minimal losses	without any need for	
	and released into the system	(3% per 1,000km).	network upgrades or	This base load power
	when the sun goes down to		new transmission.	can meet peak
	continue generating energy	Once landed in Italy		demands and will be
	(base-load power).	power can be	Through existing	cheaper than
		transported to	interconnectors	many alternatives
		European countries.	power can also arrive	such as wind and
			in South East UK.	nuclear (up to 20%
				lower than offshore
				in the UK)
			\vee	
			TI	
		_		
Nort	:h Africa 📕		Europe	UK

Mission of TuNur

- Export cheap baseload solar power from North Africa to Europe, to allow European countries to meet their renewables targets, and offer a replacement for phasing-out nuclear and ageing coal plants.
- Economic optimization and political strategy: could be seen both as an extension of the Italian (European) grid to Sahara or as a grid to grid international interconnector which enables network services: power reserve, balancing, etc.
- Under the concept that it is just one EU market pool, and under article 6, power can also be consumed in Italy and "credited" to other EU countries (such as UK)
- Under the same concept in North Africa as in EU, and through the application of Art. 9 e.g. "Montenegro exemption", virtual export is possible, although exact mechanisms still unclear. A cable must eventually be built, but "exports" can begin immediately.
- Under Article 9, power can be counted toward 2020 objectives before and after cable is built.
- Could be a new cable or ELMED cable, but capacity issues for ELMED mainly on the Italian side.
- EU regulation: some countries may insist on physical imports: need commercial and regulatory pathway to move power from Italy to customer countries

The power injection in Montalto helps offsetting Italian import Private & Confidential

- Regulation in Tunisia: TuNur is the first of a kind, has been the blueprint for the Tunisian energy regulation reform, and several regulatory aspects are still being defined
- New market concepts for energy flows, network services, etc. still to be developed, as e.g. after NW EU energy market coupling being implemented today
- TuNur is also a relevant technological challenge for both power generation (technology evolution, efficiency, reliability, utility scale) and transmission (cable depth and length, integration of overhead lines, desert crossing, VSC converters, multi-terminal scheme)

Figura 35 - Sezioni critiche

Kevin Sara

CEO Nur Energie Ltd Chairman TuNur Ltd E: <u>ks@nurenergie.com</u> M: 0044 780 234 4488 T: 0044 203 102 5352

Nur Energie Ltd

Centre Point 103 New Oxford Street London, WC1A 1DD UK <u>www.nurenergie.com</u>

TuNur (Tunisia office)

4 Rue Sophonisbe 1002 Tunis Tunisia <u>www.tunur.tn</u>

Maurizio Scaravaggi

Country Manager Italy Nur Energie Ltd Technical Director Transmission TuNur Ltd E: <u>ms@nurenergie.com</u> M: 0039 3383004203 T: 0039 029064459

Nur Power Italy Srl

Corso di Porta Vigentina 35 20122 Milano MI Italy

Session 4 – Interconnectors

Interconnectors in the IEM – A TSO's Assessment of the technological, commercial and regulatory/legal challenges – Lars Kyrberg, Corporate Counsel, TenneT TSO

Interconnectors in the IEM

A TSO's assessment of the technological, commercial and regulatory/legal challenges

Lars Kyrberg Brussels, 4 February 2014

Overview

- Role and tasks of TSOs in the IEM
- European market integration and cross border infrastructure
- Technological, commercial and regulatory/legal challenges

NORD.LINK project as case example

Role and tasks of TSOs in the IEM

From

- Stable, predictable (price-driven) energy generation
- Maintenance and (limited)
 replacement
- Focus on technology
- Local markets, separate price zones
- National focus and regulation

То

- Fluctuating (nature-driven) energy generation
- Large-scale new construction
- Technology and market
- North-Western European market, price convergence
- Grid planning and regulation at European level

New roles and tasks of TSOs

Interconnectors as integral part

European Market Integration

Building infrastructure: cross-border interconnectors

- NorNed cable to Norway in operation (700MW, socialized cable)
- BritNed cable to the United Kingdom in operation (1,000MW, merchant cable)
- Interconnector linking Doetinchem in the Netherlands to Wesel in Germany (in realisation)
- Cable link NORD.LINK to Norway (under development 1,400MW, socialized cable)
- Cable link to Denmark (under development 700MW, socialized cable)

Optimal use of infrastructure (capacity allocation):

- Market coupling between Belgium, France and the Netherlands (2008) and Germany (2010)
- Cross-border intraday trading (2011)
- Intraday trading with Norway (March 2012) and the UK (May 2012)
- European market coupling between Scandinavia, the UK and Northwest Europe (2014)

European Market Integration

Benefits interconnections

- Increasing (social) welfare in one or more countries
- Ensuring improved security of supply in the two countries
- Integration renewable energy
- Increase market efficiency

Interconnector Challenges

Technical perspective

- Specific offshore construction risks
 - Soil conditions
 - Cable laying methods
 - Vessel transport capacity
 - Weather

- · Redesign of onshore grid for import and export of full capacity
- Change of flow direction from full import to export
- → Technical challenges limited from a TSO perspective
- → Technology is mature (TenneT has two offshore interconnectors in successful operation)

Interconnector Challenges

Commercial perspective

- Interconnectors as consistent part of infrastructure investments
 - During the next decade TSOs need to invest significant amounts in the required electricity transmission capacity (TenneT: approx. € 13 bln/ EU: € 140 bln)
 - Financeability of investments
 - Equity invests in projects in development phase
- Tendering/Contracting
 - Market capacity
 - Tendering/Contracting strategy (turnkey, multi-contract approach)
 - Public procurement requirements

Interconnector Challenges

Regulatory/Legal perspective

- Subject to two regulatory regimes
- Regulation and investment rationale
- Socialized vs. merchant cable
- Projects of Common Interests (PCI)
- Practical legal issues
 - Legal regimes (including EEZ)
 - Ownership and legal body of cooperation
 - Licensing and cable route contracting

Interconnectors Case: NORD.LINK project

- Planned interconnector between Germany and Norway (1400 MW)
- Socialised/ regulated interconnector
- Project partners: Statnett, TenneT and KfW
- Operational by 2018
- Optimisation of socio-economic business case
- 50:50 partnership between Norway and Germany
- Third party equity investor: Norway's Statnett will own 50% (Norwegian part); KfW and TenneT will jointly own 50% of the project (German part)

Project part of regulated asset base and thus part of regulated tariff income

TenneT is Europe's first cross-border grid operator for electricity. With approximately 20,000 kilometres of (Extra) High Voltage lines and 36 million end users in the Netherlands and Germany we rank among the top five grid operators in Europe. Our focus is to develop a north-west European energy market and to integrate renewable energy. **Taking power further**

www.tennet.eu

Session 4 – Interconnectors

The role of power exchanges in interconnecting energy markets – Dr. Wolfram Vogel, Director Public Affairs & Communication, EPEX SPOT

EPEXSPOT EUROPEAN POWER EXCHANGE

Bird & Bird

The role of power exchanges in interconnecting energy markets

Brussels, February 4th 2014 Dr. Wolfram Vogel | Director Public Affairs & Communication, EPEX SPOT

© EPEX SPOT SE - Any use of the information contained in this document is expressly prohibited without the written consent of EPEX SPOT SE.

Liberalization of the European electricity market

- 1992 : Creation of NordPool in Norway
 - 1996 : European Directive on energy market liberalization
 - 2000: Creation of two exchanges in Germany
 - 2001 : Creation of Powernext in France
 - 2006 : Launch of 1st market coupling in continental Europe
 - •2008/09: Creation of EPEX SPOT, fusion of FR & DE exchanges
 - 2010 : EEG Law in Germany; launch of CWE market coupling
 - 2011 : Internal Energy Market 2014; NOME Law in France
 - 2013 : European Network Codes
- The creation of EPEX SPOT and the development of power trading is one of the most visible results of the liberalization of the European Power Market.

The organized market: Third pillar of the energy value chain

- The **power exchange centralizes buy and sell orders of energy professionals** (producers, retailers, brokers, banks, large industrials)
- The power exchange thus promotes the emergence of a transparent, regular, fair and neutral market price

The role of the Exchange in the timeline of the market

EUROPEAN POWER EXCHANGE

EPEXSPOT

Source: EPEX SPOT

Day-Ahead and Intraday markets are complementary:

- Day-Ahead: blind auction, anonymous, without price indication → optimization of liquidity
- **Intraday**: continuous price formation, near real time \rightarrow flexibility tool

Markets, services & volumes

- EPEX SPOT's market areas cover 1.200 TWh of yearly power consumption, which represents 40% of EU's Integrated Electricity Market.
- EPEX SPOT has an inherent incentive to **integrate European power markets**. We support this process by our **harmonized cross-border trading systems**.

European Market Coupling: Integrating the EU electricity market by end of 2014

EPEXSPC

EUROPEAN POWER EXCHANGE

- European Target Model for Day-Ahead markets: cross-border trade optimization based on implicit auctions of cross-border capacities
- Development of a single and harmonized method to calculate electricity prices on a European level ("Price Coupling of Regions")
- Regional model allows to adjust political objectives, cross-border cooperation unlocks macroeconomic benefits

European Market Coupling: Benefits

© EPEX SPOT SE - Any use of the information contained in this document is expressly prohibited without the written consent of EPEX SPOT SE.

40

Thank you for your attention!

EPEXDAY AHEAD						View detailed information	
	Price Base (€/MWh)	Price Peak (€/MWh)	Vol. Day Exc. (MWh)	Vol. Day OTC (MWh)	Vol. Month Exc. (MWh)	Vol. Month OTC (MWh)	Delivery Day
France	36.18 뇌	37.22 뇌	152,382 <mark>\</mark>	-	3,749,105	 π) 	27/07/2013
📲 Germany/Austria (Phelix)	33.23 뇌	32.64 뇌	648,244 🖌	3 <u>8</u> 23	18,672,705	19 <u>10</u> 1	27/07/2013
💽 Switzerland (Swissix)	36.03 뇌	37.00 🖌	57,814 🖌	9 8 3	1,634,144	-	27/07/2013
ELIX	33.14 🖌	33.33 🖌		1773	574)	1776	27/07/2013

Please find market results and further information on our website:

www.epexspot.com

Contact

info@epexspot.com

Thank you & Bird & Bird

Bird & Bird is an international legal practice comprising Bird & Bird LLP and its affiliated and associated businesses.

Bird & Bird LLP is a limited liability partnership, registered in England and Wales with registered number OC340318 and is authorised and regulated by the Solicitors Regulation Authority. Its registered office and principal place of business is at 15 Fetter Lane, London EC4A 1JP. A list of members of Bird & Bird LLP and of any non-members who are designated as partners, and of their respective professional qualifications, is open to inspection at that address.

twobirds.com